Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6041, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472286

RESUMO

The validity of observational methods in ergonomics is still challenging research. Criterion validity in terms of concurrent validity is the most commonly studied. However, studies comparing observational methods with biomechanical values are rare. Thus, the aim of this study is to compare the Ovako Working Posture Analysing System (OWAS) and the Rapid Entire Body Assessment (REBA) with in vivo load measurements at hip, spine, and knee during stoop and squat lifting of 14 participants. The results reveal that OWAS and REBA action levels (AL) can distinguish between different in vivo load measurements during manual lifting. However, the results also reveal that the same OWAS- and REBA-AL do not necessarily provide equal mean values of in vivo load measurements. For example, resultant contact force in the vertebral body replacement for squat lifting ranged from 57% body weight (%BW) in OWAS-AL1 to 138%BW in OWAS-AL3 compared to 46%BW in REBA-AL0 and 173%BW in REBA-AL3. Furthermore, the results suggest that the performed squat lifting techniques had a higher risk for work-related musculoskeletal disorders than the performed stoop lifting techniques.


Assuntos
Doenças Musculoesqueléticas , Coluna Vertebral , Humanos , Joelho , Articulação do Joelho , Medição de Risco , Fenômenos Biomecânicos
2.
J Bone Joint Surg Am ; 105(24): 1962-1971, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079507

RESUMO

BACKGROUND: Swimming is commonly recommended as postoperative rehabilitation following total hip arthroplasty (THA) and total knee arthroplasty (TKA). So far, in vivo hip and knee joint loads during swimming remain undescribed. METHODS: In vivo hip and knee joint loads were measured in 6 patients who underwent THA and 5 patients who underwent TKA with instrumented joint implants. Joint loads, including the resultant joint contact force (F Res ), torsional moment around the femoral shaft axis or the tibial axis (M Tors ), bending moment at the middle of the femoral neck (M Bend ), torsional moment around the femoral neck axis (M Tne ), and medial force ratio (MFR) in the knee, were measured during breaststroke swimming at 0.5, 0.6, and 0.7 m/s and the breaststroke and crawl kicks at 0.5 and 1.0 m/s. RESULTS: The ranges of the median maximal F Res were 157% to 193% of body weight for the hip and 93% to 145% of body weight for the knee during breaststroke swimming. Greater maxima of F Res (hip and knee), M Tors (hip and knee), M Bend (hip), and M Tne (hip) were observed with higher breaststroke swimming velocities, but significance was only identified between 0.5 and 0.6 m/s in F Res (p = 0.028), M Tors (p = 0.028), and M Bend (p = 0.028) and between 0.5 and 0.7 m/s in F Res (p = 0.045) in hips. No difference was found in maximal MFR between different breaststroke swimming velocities. The maximal F Res was significantly positively correlated with the breaststroke swimming velocity (hip: r = 0.541; p < 0.05; and knee: r = 0.414; p < 0.001). The maximal F Res (hip and knee) and moments (hip) were higher in the crawl kick than in the breaststroke kick, and a significant difference was recognized in F Res Max for the hip: median, 179% versus 118% of body weight (p = 0.028) for 0.5 m/s and 166% versus 133% of body weight (p = 0.028) for 1.0 m/s. CONCLUSIONS: Swimming is a safe and low-impact activity, particularly recommended for patients who undergo THA or TKA. Hip and knee joint loads are greater with higher swimming velocities and can be influenced by swimming styles. Nevertheless, concrete suggestions to patients who undergo arthroplasty on swimming should involve individual considerations. LEVEL OF EVIDENCE: Therapeutic Level IV . See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Humanos , Natação , Articulação do Joelho/cirurgia , Quadril/cirurgia , Peso Corporal
3.
J Biomech ; 151: 111549, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36948000

RESUMO

Patellar complications frequently limit the success of total knee arthroplasty. In addition to the musculoskeletal forces themselves, patellar tendon elastic properties are essential for driving patellar loading. Elastic properties reported in the literature exhibit high variability and appear to differ according to the methodologies used. Specifically in total knee arthroplasty patients, only limited knowledge exists on in vivo elastic properties and their corresponding loads. For the first time, we report stiffness, Young's modulus, and forces of the patellar tendon, derived from four patients with telemetric total knee arthroplasties using a combined imaging and measurement approach. To achieve this, synchronous in vivo telemetric assessment of tibio-femoral contact forces and fluoroscopic assessment of knee kinematics, along with full body motion capture and ground reaction forces, fed musculoskeletal multi-body models to quantify patellar tendon loading and elongation. Mechanical patellar tendon properties were calculated during a squat and a sit-stand-sit activity, with resulting tendon stiffness and Young's modulus ranging from 511 to 1166 N/mm and 259 to 504 MPa, respectively. During these activities, the patellar tendon force reached peak values between 1.31 and 2.79 bodyweight, reaching levels of just âˆ¼0.5 bodyweight below the tibio-femoral forces. The results of this study provide valuable input data for mechanical simulations of the patellar tendon and the whole resurfaced knee.


Assuntos
Artroplastia do Joelho , Ligamento Patelar , Humanos , Fenômenos Biomecânicos , Articulação do Joelho , Tendões , Artroplastia do Joelho/métodos , Módulo de Elasticidade
4.
J Biomech ; 141: 111171, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803037

RESUMO

Knowledge of both tibio-femoral kinematics and kinetics is necessary for fully understanding knee joint biomechanics, guiding implant design and testing, and driving and validating computational models. In 2017, the CAMS-Knee datasets were presented, containing synchronized in vivo implant kinematics measured using a moving fluoroscope and tibio-femoral contact loads measured using instrumented implants from six subjects. However, to date, no representative summary of kinematics and kinetics obtained from measurements at the joint level of the same cohort of subjects exists. In this study, we present the CAMS-Knee standardized subject "Stan", whose reference data include tibio-femoral kinematics and loading scenarios from all six subjects for level and downhill walking, stair descent, squat and sit-to-stand-to-sit. Using the peak-preserving averaging method by Bergmann and co-workers, we derived scenarios for generally high (CAMS-HIGH100), peak, and extreme loading. The CAMS-HIGH100 axial forces reached peaks between 3022 and 3856 N (3.08-3.93 body weight) for the five investigated activities. Anterior-posterior forces were about a factor of ten lower. The axial moment around the tibia was highest for level walking and squatting with peaks of 9.4 Nm and 10.5 Nm acting externally. Internal tibial rotations of up to 8.4° were observed during squat and sitting, while the walking activities showed approximately half the internal rotation. The CAMS-HIGH100 loads were comparable to Bergmann and co-workers', but have the additional benefit of synchronized kinematics. Stan's loads are +11 to +56% higher than the ISO 14243 wear testing standard loads, while the kinematics exhibit markedly different curve shapes. Along with the original CAMS-Knee datasets, Stan's data can be requested at cams-knee.orthoload.com.


Assuntos
Distinções e Prêmios , Prótese do Joelho , Fenômenos Biomecânicos , Fêmur , Humanos , Articulação do Joelho , Tíbia
5.
Front Bioeng Biotechnol ; 10: 808027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721846

RESUMO

Understanding the sources of error is critical before models of the musculoskeletal system can be usefully translated. Using in vivo measured tibiofemoral forces, the impact of uncertainty in muscle-tendon parameters on the accuracy of knee contact force estimates of a generic musculoskeletal model was investigated following a probabilistic approach. Population variability was introduced to the routine musculoskeletal modeling framework by perturbing input parameters of the lower limb muscles around their baseline values. Using ground reaction force and skin marker trajectory data collected from six subjects performing body-weight squat, the knee contact force was calculated for the perturbed models. The combined impact of input uncertainties resulted in a considerable variation in the knee contact force estimates (up to 2.1 BW change in the predicted force), especially at larger knee flexion angles, hence explaining up to 70% of the simulation error. Although individual muscle groups exhibited different contributions to the overall error, variation in the maximum isometric force and pathway of the muscles showed the highest impacts on the model outcomes. Importantly, this study highlights parameters that should be personalized in order to achieve the best possible predictions when using generic musculoskeletal models for activities involving deep knee flexion.

6.
Front Bioeng Biotechnol ; 9: 754715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820363

RESUMO

Some approaches in total knee arthroplasty aim for an oblique joint line to achieve an even medio-lateral load distribution across the condyles during the stance phase of gait. While there is much focus on the angulation of the joint line in static frontal radiographs, precise knowledge of the associated dynamic joint line orientation and the internal joint loading is limited. The aim of this study was to analyze how static alignment in frontal radiographs relates to dynamic alignment and load distribution, based on direct measurements of the internal joint loading and kinematics. A unique and novel combination of telemetrically measured in vivo knee joint loading and simultaneous internal joint kinematics derived from mobile fluoroscopy ("CAMS-Knee dataset") was employed to access the dynamic alignment and internal joint loading in 6 TKA patients during level walking. Static alignment was measured in standard frontal postoperative radiographs while external adduction moments were computed based on ground reaction forces. Both static and dynamic parameters were analyzed to identify correlations using linear and non-linear regression. At peak loading during gait, the joint line was tilted laterally by 4°-7° compared to the static joint line in most patients. This dynamic joint line tilt did not show a strong correlation with the medial force (R 2: 0.17) or with the mediolateral force distribution (pseudo R 2: 0.19). However, the external adduction moment showed a strong correlation with the medial force (R 2: 0.85) and with the mediolateral force distribution (pseudo R 2: 0.78). Alignment measured in static radiographs has only limited predictive power for dynamic kinematics and loading, and even the dynamic orientation of the joint line is not an important factor for the medio-lateral knee load distribution. Preventive and rehabilitative measures should focus on the external knee adduction moment based on the vertical and horizontal components of the ground reaction forces.

7.
PLoS One ; 13(12): e0207014, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540775

RESUMO

During whole body vibrations, the total contact force in knee and hip joints consists of a static component plus the vibration-induced dynamic component. In two different cohorts, these forces were measured with instrumented joint implants at different vibration frequencies and amplitudes. For three standing positions on two platforms, the dynamic forces were compared to the static forces, and the total forces were related to the peak forces during walking. A biomechanical model served for estimating muscle force increases from contact force increases. The median static forces were 122% to 168% (knee), resp. 93% to 141% (hip), of the body weight. The same accelerations produced higher dynamic forces for alternating than for parallel foot movements. The dynamic forces individually differed much between 5.3% to 27.5% of the static forces in the same positions. On the Powerplate, they were even close to zero in some subjects. The total forces were always below 79% of the forces during walking. The dynamic forces did not rise proportionally to platform accelerations. During stance (Galileo, 25 Hz, 2 mm), the damping of dynamic forces was only 8% between foot and knee but 54% between knee and hip. The estimated rises in muscle forces due to the vibrations were in the same ranges as the contact force increases. These rises were much smaller than the vibration-induced EMG increases, reported for the same platform accelerations. These small muscle force increases, along with the observation that the peak contact and muscle forces during vibrations remained far below those during walking, indicate that dynamic muscle force amplitudes cannot be the reason for positive effects of whole body vibrations on muscles, bone remodelling or arthritic joints. Positive effects of vibrations must be caused by factors other than raised forces amplitudes.


Assuntos
Articulação do Quadril/fisiologia , Articulação do Joelho/fisiologia , Idoso , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Vibração , Caminhada , Suporte de Carga
8.
J Bone Joint Surg Am ; 100(19): 1637-1644, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30277993

RESUMO

BACKGROUND: High friction moments in hip implants contribute to the aseptic loosening of cementless cups, of which there are approximately 100,000 cases per year; sustained joint loading may cause such high moments. The most "critical" physical activities associated with sustained joint loading were identified in this study. METHODS: Friction moments in the cup were telemetrically measured about 33,000 times in the endoprostheses of 9 subjects during >1,400 different activities. The highest moments were compared with the cup's fixation stability limit of approximately 4 Nm. RESULTS: A total of 124 different activities caused friction moments meeting or exceeding the critical limit, with the highest value of 11.5 Nm. Most involved sustained high contact forces before or during the activity. The highest peak moments (6.3 to 11.5 Nm) occurred when moving the contralateral leg during 1-legged stance, during breaststroke swimming, muscle stretching, 2-legged stance with muscle contraction, and during static 1-legged stance. The median moments were highest (3.4 to 3.9 Nm) for unstable 1-legged stance, whole-body vibration training, 2-legged stance with an unexpected push at the upper body, 1-legged stance while exercising the contralateral leg, and running after 2-legged stance. CONCLUSIONS: Frequent unloading plus simultaneous movement of the joint are required to maintain good joint lubrication and keep the friction moments low. Frequent, sustained high loads before or during an activity may cause or contribute to aseptic cup loosening. During the first months after hip arthroplasty, such activities should be avoided or reduced as much as possible. This especially applies during postoperative physiotherapy. Whether these guidelines also apply for subjects with knee implants or arthrotic hip or knee joints requires additional investigation. CLINICAL RELEVANCE: The risk of aseptic cup loosening may be reduced by avoiding sustained loading of hip implants without periodic joint movement.


Assuntos
Artroplastia de Quadril , Exercício Físico , Prótese de Quadril , Complicações Pós-Operatórias/etiologia , Idoso , Feminino , Fricção , Humanos , Masculino , Pessoa de Meia-Idade , Falha de Prótese/etiologia
9.
J Biomech ; 65: 32-39, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29037443

RESUMO

Combined knowledge of the functional kinematics and kinetics of the human body is critical for understanding a wide range of biomechanical processes including musculoskeletal adaptation, injury mechanics, and orthopaedic treatment outcome, but also for validation of musculoskeletal models. Until now, however, no datasets that include internal loading conditions (kinetics), synchronized with advanced kinematic analyses in multiple subjects have been available. Our goal was to provide such datasets and thereby foster a new understanding of how in vivo knee joint movement and contact forces are interlinked - and thereby impact biomechanical interpretation of any new knee replacement design. In this collaborative study, we have created unique kinematic and kinetic datasets of the lower limb musculoskeletal system for worldwide dissemination by assessing a unique cohort of 6 subjects with instrumented knee implants (Charité - Universitätsmedizin Berlin) synchronized with a moving fluoroscope (ETH Zürich) and other measurement techniques (including whole body kinematics, ground reaction forces, video data, and electromyography data) for multiple complete cycles of 5 activities of daily living. Maximal tibio-femoral joint contact forces during walking (mean peak 2.74 BW), sit-to-stand (2.73 BW), stand-to-sit (2.57 BW), squats (2.64 BW), stair descent (3.38 BW), and ramp descent (3.39 BW) were observed. Internal rotation of the tibia ranged from 3° external to 9.3° internal. The greatest range of anterio-posterior translation was measured during stair descent (medial 9.3 ±â€¯1.0 mm, lateral 7.5 ±â€¯1.6 mm), and the lowest during stand-to-sit (medial 4.5 ±â€¯1.1 mm, lateral 3.7 ±â€¯1.4 mm). The complete and comprehensive datasets will soon be made available online for public use in biomechanical and orthopaedic research and development.


Assuntos
Articulação do Joelho/fisiologia , Músculo Esquelético/fisiologia , Atividades Cotidianas , Idoso , Fenômenos Biomecânicos , Eletromiografia , Feminino , Fêmur/fisiologia , Humanos , Cinética , Prótese do Joelho , Extremidade Inferior/fisiologia , Masculino , Pessoa de Meia-Idade , Rotação , Tíbia/fisiologia , Caminhada/fisiologia
10.
PLoS One ; 12(3): e0171972, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28319145

RESUMO

Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies.


Assuntos
Exercício Físico/fisiologia , Articulação do Quadril/fisiologia , Articulação do Joelho/fisiologia , Água , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Terapia por Exercício , Feminino , Articulação do Quadril/cirurgia , Prótese de Quadril , Humanos , Hidrodinâmica , Articulação do Joelho/cirurgia , Prótese do Joelho , Masculino , Pessoa de Meia-Idade , Telemetria , Suporte de Carga/fisiologia
11.
PLoS One ; 11(5): e0155612, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27195789

RESUMO

With the increasing success of hip joint replacements, the average age of patients has decreased, patients have become more active and their expectations of the implant durability have risen. Thus, pre-clinical endurance tests on hip implants require defining realistic in vivo loads from younger and more active patients. These loads require simplifications to be applicable for simulator tests and numerical analyses. Here, the contact forces in the joint were measured with instrumented hip implants in ten subjects during nine of the most physically demanding and frequent activities of daily living. Typical levels and directions of average and high joint loads were extracted from the intra- and inter-individually widely varying individual data. These data can also be used to analyse bone remodelling at the implant-bone interface, evaluate tissue straining in finite element studies or validate analytical loading predictions, among other uses. The current ISO standards for endurance tests of implant stems and necks are based on historic analytical data from the 1970s. Comparisons of these test forces with in vivo loads unveiled that their unidirectional orientations deviate from the time-dependent in vivo directions during walking and most other activities. The ISO force for testing the stem is substantially too low while the ISO force for the neck better matches typical in vivo magnitudes. Because the magnitudes and orientations of peak forces substantially vary among the activities, load scenarios that reflect a collection of time-dependent high forces should be applied rather than using unidirectional forces. Based on data from ten patients, proposals for the most demanding activities, the time courses of the contact forces and the required cycle numbers for testing are given here. Friction moments in the joint were measured in addition to the contact forces. The moment data were also standardized and can be applied to wear tests of the implant. It was shown that friction only very slightly influences the stresses in the implant neck and shaft.


Assuntos
Artroplastia de Quadril/instrumentação , Articulação do Quadril , Prótese de Quadril , Teste de Materiais , Suporte de Carga , Atividades Cotidianas , Idoso , Fenômenos Biomecânicos , Feminino , Fricção , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Período Pós-Operatório , Desenho de Prótese , Valores de Referência , Reprodutibilidade dos Testes , Estresse Mecânico , Fatores de Tempo , Caminhada
12.
Clin Biomech (Bristol, Avon) ; 30(8): 860-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26143557

RESUMO

BACKGROUND: The medial knee contact force may be lowered by modified foot loading to prevent the progression of unilateral gonarthrosis but the real effects of such gait modifications are unknown. This study investigates how walking with a more medial or lateral rollover of the foot influences the in vivo measured knee contact forces. METHODS: Five subjects with telemeterized knee implants walked on a treadmill with pronounced lateral or medial foot loading. Acoustic feedback of peak foot pressure was used to facilitate the weight bearing shift. The resultant contact force, Fres, the medial contact force, Fmed, and the force distribution Fmed/Fres across the tibial plateau were computed from the measured joint contact loads. FINDINGS: During lateral foot loading, the two maxima of Fres during the stance phase, Peak 1 and Peak 2, increased by an average of 20% and 12%, respectively. The force distribution was changed by only -3%/+2%. As a result, Fmed increased by +16%/+17%. Medial foot loading, on the other hand, changed Fres only slightly, but decreased the distribution by -18%/-11%. This led to average reductions of Fmed by -18%/-18%. The reductions were realized by kinematic adaptations, such as increases of ankle eversion, step width and foot progression angle. INTERPRETATION: Medial foot loading consistently reduced the medial knee compartment, and may be a helpful gait modification for patients with pronounced medial gonarthrosis. The increase of Fmed during lateral foot loading was most likely caused by muscular co-contractions. Long-term training may lead to more efficient gait and reduce co-contractions.


Assuntos
Articulação do Joelho/fisiologia , Prótese do Joelho , Estresse Mecânico , Caminhada , Acústica , Idoso , Articulação do Tornozelo , Antropometria , Fenômenos Biomecânicos , , Marcha , Humanos , Articulação do Joelho/fisiopatologia , Pessoa de Meia-Idade , Contração Muscular , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/reabilitação , Pressão , Desenho de Prótese , Telemetria , Suporte de Carga
13.
PLoS One ; 9(5): e98510, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24866883

RESUMO

Activities with high spinal loads should be avoided by patients with back problems. Awareness about these activities and knowledge of the associated loads are important for the proper design and pre-clinical testing of spinal implants. The loads on an instrumented vertebral body replacement have been telemetrically measured for approximately 1000 combinations of activities and parameters in 5 patients over a period up to 65 months postoperatively. A database containing, among others, extreme values for load components in more than 13,500 datasets was searched for 10 activities that cause the highest resultant force, bending moment, torsional moment, or shear force in an anatomical direction. The following activities caused high resultant forces: lifting a weight from the ground, forward elevation of straight arms with a weight in hands, moving a weight laterally in front of the body with hanging arms, changing the body position, staircase walking, tying shoes, and upper body flexion. All activities have in common that the center of mass of the upper body was moved anteriorly. Forces up to 1650 N were measured for these activities of daily life. However, there was a large intra- and inter-individual variation in the implant loads for the various activities depending on how exercises were performed. Measured shear forces were usually higher in the posterior direction than in the anterior direction. Activities with high resultant forces usually caused high values of other load components.


Assuntos
Atividades Cotidianas , Fraturas por Compressão/fisiopatologia , Vértebras Lombares/lesões , Fraturas da Coluna Vertebral/fisiopatologia , Idoso , Fenômenos Biomecânicos , Feminino , Fixação Interna de Fraturas , Fraturas por Compressão/cirurgia , Humanos , Vértebras Lombares/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fraturas da Coluna Vertebral/cirurgia , Telemetria , Caminhada/fisiologia , Suporte de Carga
14.
PLoS One ; 9(1): e86035, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465856

RESUMO

The loads acting in knee joints must be known for improving joint replacement, surgical procedures, physiotherapy, biomechanical computer simulations, and to advise patients with osteoarthritis or fractures about what activities to avoid. Such data would also allow verification of test standards for knee implants. This work analyzes data from 8 subjects with instrumented knee implants, which allowed measuring the contact forces and moments acting in the joint. The implants were powered inductively and the loads transmitted at radio frequency. The time courses of forces and moments during walking, stair climbing, and 6 more activities were averaged for subjects with I) average body weight and average load levels and II) high body weight and high load levels. During all investigated activities except jogging, the high force levels reached 3,372-4,218N. During slow jogging, they were up to 5,165N. The peak torque around the implant stem during walking was 10.5 Nm, which was higher than during all other activities including jogging. The transverse forces and the moments varied greatly between the subjects, especially during non-cyclic activities. The high load levels measured were mostly above those defined in the wear test ISO 14243. The loads defined in the ISO test standard should be adapted to the levels reported here. The new data will allow realistic investigations and improvements of joint replacement, surgical procedures for tendon repair, treatment of fractures, and others. Computer models of the load conditions in the lower extremities will become more realistic if the new data is used as a gold standard. However, due to the extreme individual variations of some load components, even the reported average load profiles can most likely not explain every failure of an implant or a surgical procedure.


Assuntos
Prótese do Joelho/normas , Estresse Mecânico , Atividades Cotidianas , Idoso , Artroplastia do Joelho , Fenômenos Biomecânicos , Peso Corporal , Feminino , Humanos , Corrida Moderada , Articulação do Joelho/fisiopatologia , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/cirurgia , Padrões de Referência , Valores de Referência , Torque , Caminhada
15.
PLoS One ; 8(10): e77807, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204977

RESUMO

INTRODUCTION: After hip surgery, it is the orthopedist's decision to allow full weight bearing to prevent complications or to prescribe partial weight bearing for bone ingrowth or fracture consolidation. While most loading conditions in the hip joint during activities of daily living are known, it remains unclear how demanding physiotherapeutic exercises are. Recommendations for clinical rehabilitation have been established, but these guidelines vary and have not been scientifically confirmed. The aim of this study was to provide a basis for practical recommendations by determining the hip joint contact forces and moments that act during physiotherapeutic activities. METHODS: Joint contact loads were telemetrically measured in 6 patients using instrumented hip endoprostheses. The resultant hip contact force, the torque around the implant stem, and the bending moment in the neck were determined for 13 common physiotherapeutic exercises, classified as weight bearing, isometric, long lever arm, or dynamic exercises, and compared to the loads during walking. RESULTS: With peak values up to 441%BW, weight bearing exercises caused the highest forces among all exercises; in some patients they exceeded those during walking. During voluntary isometric contractions, the peak loads ranged widely and potentially reached high levels, depending on the intensity of the contraction. Long lever arms and dynamic exercises caused loads that were distributed around 50% of those during walking. CONCLUSION: Weight bearing exercises should be avoided or handled cautiously within the early post-operative period. The hip joint loads during isometric exercises depend strongly on the contraction intensity. Nonetheless, most physiotherapeutic exercises seem to be non-hazardous when considering the load magnitudes, even though the loads were much higher than expected. When deciding between partial and full weight bearing, physicians should consider the loads relative to those caused by activities of daily living.


Assuntos
Exercício Físico/fisiologia , Articulação do Quadril/fisiopatologia , Osteoartrite/cirurgia , Estresse Mecânico , Suporte de Carga/fisiologia , Fenômenos Biomecânicos , Estudos de Coortes , Feminino , Prótese de Quadril , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular , Modalidades de Fisioterapia , Período Pós-Operatório
16.
J Biomech ; 46(4): 796-800, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23219275

RESUMO

Since footwear is commonly used every day, its influence on knee joint loading and thereby on the development and progression of osteoarthritis may be crucial. So far the influence of footwear has been examined only indirectly. The aim of this study was to directly measure the effect of footwear on tibiofemoral contact loads during walking. Instrumented knee implants with telemetric data transmission were used to measure the tibiofemoral contact forces and moments in six subjects. The loads during walking with four different shoes (basic running shoes, advanced running shoes, classical dress shoes and shoes with a soft rounded sole in the sagittal plane (MBT)) were compared to those during barefoot walking. Peak values of all six load components were analyzed. In general, footwear tended to increase knee joint loading slightly, with the dress shoe being the most unfavorable type of footwear. At the early stance phase all load components were increased by all shoe types. The resultant force rose by 2-5%, the internal adduction moment by 7-12% and the forces on the medial compartment by 3-5%. Significant reductions of the resultant force were solely observed for the advanced running shoe (-6%) and the MBT (-9%) shoe at late stance. Also the medial compartment force was slightly yet non-significantly reduced by 2-5% with the two shoes. It is questionable whether such small load changes have an influence on the progression of gonarthrosis. Future research is necessary to examine which factors regarding the shoe design, such as heel height, arch support or flexibility are most decisive for a reduction of knee joint loading.


Assuntos
Articulação do Joelho/fisiopatologia , Prótese do Joelho , Sapatos , Caminhada/fisiologia , Idoso , Fenômenos Biomecânicos , Feminino , Marcha/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/cirurgia , Telemetria , Suporte de Carga/fisiologia
17.
PLoS One ; 7(8): e43489, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927973

RESUMO

When walking long distances, hip prostheses heat up due to friction. The influence of articulating materials and lubricating properties of synovia on the final temperatures, as well as any potential biological consequences, are unknown. Such knowledge is essential for optimizing implant materials, identifying patients who are possibly at risk of implant loosening, and proving the concepts of current joint simulators. An instrumented hip implant with telemetric data transfer was developed to measure the implant temperatures in vivo. A clinical study with 100 patients is planned to measure the implant temperatures for different combinations of head and cup materials during walking. This study will answer the question of whether patients with synovia with poor lubricating properties may be at risk for thermally induced bone necrosis and subsequent implant failure. The study will also deliver the different friction properties of various implant materials and prove the significance of wear simulator tests. A clinically successful titanium hip endoprosthesis was modified to house the electronics inside its hollow neck. The electronics are powered by an external induction coil fixed around the joint. A temperature sensor inside the implant triggers a timer circuit, which produces an inductive pulse train with temperature-dependent intervals. This signal is detected by a giant magnetoresistive sensor fixed near the external energy coil. The implant temperature is measured with an accuracy of 0.1°C in a range between 20°C and 58°C and at a sampling rate of 2-10 Hz. This rate could be considerably increased for measuring other data, such as implant strain or vibration. The employed technique of transmitting data from inside of a closed titanium implant by low frequency magnetic pulses eliminates the need to use an electrical feedthrough and an antenna outside of the implant. It enables the design of mechanically safe and simple instrumented implants.


Assuntos
Articulação do Quadril , Próteses e Implantes , Temperatura , Tecnologia sem Fio/instrumentação , Fricção , Humanos , Fenômenos Mecânicos , Próteses e Implantes/efeitos adversos , Desenho de Prótese , Segurança , Líquido Sinovial , Telemetria
18.
J Orthop Res ; 29(12): 1910-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21656850

RESUMO

A conventional method to unload the medial compartment of patients with gonarthrosis and thus to achieve pain reduction is the use of laterally wedged shoes. Our aim was to measure in vivo their effect on medial compartment loads using instrumented knee implants. Medial tibio-femoral contact forces were measured in six subjects with instrumented knee implants during walking with the following shoes: without wedge, with 5 and 10 mm wedges under the lateral sole, and with a laterally wedged insole (5 mm). Measurements were repeated with the shoes in combination with an ankle-stabilizing orthosis. Without orthosis, peak medial forces were reduced by only 1-4% on average. With orthosis, the average reduction was 2-7%. Highest reductions were generally observed with the 10 mm wedge, followed by the 5 mm wedge, and the 5 mm insole. Individual force reductions reached up to 15%. Medial force reductions while walking with wedged shoes were generally small. Due to high inter-individual differences, it seems that some patients might benefit from lateral wedges, whereas others might not. Further analyses of the individual kinematics will show which factors are most decisive for the reduction of medial compartment load.


Assuntos
Articulação do Joelho/fisiologia , Prótese do Joelho , Aparelhos Ortopédicos , Osteoartrite do Joelho , Sapatos , Suporte de Carga/fisiologia , Idoso , Articulação do Tornozelo/fisiologia , Artroplastia do Joelho , Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/terapia , Desenho de Prótese , Telemetria , Caminhada
19.
J Biomech ; 44(7): 1354-60, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21288522

RESUMO

Knee osteoarthritis occurs predominately at the medial compartment. To unload the affected compartment, valgus braces are used which induce an additional valgus moment in order to shift the load more laterally. Until now the biomechanical effect of braces was mainly evaluated by measuring changes in external knee adduction moments. The aim of this study was to investigate if and to which extent the medial compartment load is reduced in vivo when wearing valgus braces. Six components of joint contact load were measured in vivo in three subjects, using instrumented, telemeterized knee implants. From the forces and moments the medio-lateral force distribution was calculated. Two braces, MOS Genu (Bauerfeind AG) and Genu Arthro (Otto Bock) were investigated in neutral, 4° and 8° valgus adjustment during walking, stair ascending and descending. During walking with the MOS brace in 4°/8° valgus adjustment, medial forces were reduced by 24%/30% on average at terminal stance. During walking with the GA in the 8° valgus position, medial forces were reduced by only 7%. During stair ascending/descending significant reductions of 26%/24% were only observed with the MOS (8°). The load reducing ability of the two investigated valgus braces was confirmed in three subjects. However, the load reduction depends on the brace stiffness and its valgus adjustment and varies strongly inter-individually. Valgus adjustments of 8° might, especially with the MOS brace, not be tolerated by patients for a long time. Medial load reductions of more than 25% can therefore probably not be expected in clinical practise.


Assuntos
Articulação do Joelho/fisiologia , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/reabilitação , Idoso , Fenômenos Biomecânicos , Braquetes , Calibragem , Desenho de Equipamento , Humanos , Articulação do Joelho/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estresse Mecânico , Telemetria/métodos , Tíbia/fisiologia , Caminhada , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...